Report No. E-0082-RT/1 Final Technical Report 55-ft-D_O Ringsail Parachute Planetary Entry Parachute Program Submitted to: Martin Marietta Corp. Contract No. RC7-709039

N68-20315	
(ACCESSION NUMBER)	(THRY)
58	/
E 0 / 6/58	(CODE)
(NASA CR OR TMX OR AD NUMBER)	(CATEGORY)

Prepared by:

F. J. Stone Design Analyst

Approved by:

ohn W. Stone rogram Manager

ABSTRACT

The Planetary Entry Parachute Program 55-foot nominal diameter ringsail parachute design is analyzed with respect to material strengths, shock loading, and material stress analysis. This report summarizes calculations on which the design is based, material and joint test data, stress analysis procedures, and system weight and center of gravity location calculations. A materials properties section is also included and basic parachute system configuration and dimensions are defined.

TABLE OF CONTENTS

Sect:	<u>Title</u>	Page
1.0	INTRODUCTION	1
2.0	DESIGN SPECIFICATION	. 2
2.1	Parachute	2
2.2	Riser System and Deployment Bag	2 .
2.3	Deployment Conditions, Weight, and Miscellaneous Requirements	3
2.4	Miscellaneous Requirements	3
3.0	DESIGN DATA	5
4.0	GORE LAYOUT AND PARACHUTE CONFIGURATION	6
4.1	Basic Gore Geometry	6
4.2	Geometric Porosity	13
5.0	SNATCH FORCE	21
6.0	OPENING FORCE	22
7.0	PARACHUTE SIZING	: 23
8.0	STRESS ANALYSIS	24
.9.0	WEIGHT BREAKDOWN	39
10.0	CENTER OF GRAVITY	41
10.1	Packed Parachute	41
10.2	"Strung-out" Parachute	41
10.3	Inflated Parachute	41,
11.0	PARACHUTE ASSEMBLY MASS MOMENTS OF INERTIA	47
11.1	Parachute Assembly and Its C.G. Location	47
11.2	Canopy Material	47
11.2	.1 Roll Inertia of Fabric Circumferential Bands That Make Up Canopy	47
11.2	.2 Pitch and Yaw Inertia of Fabric Bands That Make Up Canopy	51
11.3	Radial Bands	51

Section	<u>Title</u>	Page
11.3.1	Roll Inertia of Radial Bands on a Canopy	51
11.3.2	Pitch and Yaw Inertia of Radial Bands on a Canopy	52
11.4 S	hroud Lines	53
11.4.1	Roll Inertia of Shroud Lines Making Up a Parachute	53
11.4.2	Pitch and Yaw Inertia of Shroud Lines Making Up a Parachute	53
12.0 F	ABRICATION AND PACKING	56
12.1 F	abrication	56
	Packing Procedure for 55-ft Ringsail Assy. \$19.1466 Rev. Orig.	57
1	APPENDIX A Computer Runs	
	ADDENDITY D. Toint West Reports	

LIST OF ILLUSTRATIONS

<u>Figure</u>	<u>Title</u>	Page
4-1	Basic ringsail geometry.	7
4-2	Basic Gore Dimensions for the 55-ft Ringsail.	10
4-3	Fullness Allowed on the 55-ft Ringsail.	11
4-4	Ring and Sail Patterns for the 55-ft Ringsail. Dimensions are Given in Inches.	12
4-5	Basic Gore of the 55-ft Ringsail, for Porosity Calculations.	14
4-6	Scoop Shape. All Dimensions are in Inches and are Taken from Section 4.1. They are for the T Trailing Edge of Sail 10 and the Leading Edge of Sail 9.	16
4-7	Geometric Porosity of Crown Area vs Parachute Diameter for Ringsail Parachutes.	18
4-8	Geometry of Omitted 8th Sail.	19
4-9	Geometry of the Sail Scoops.	19
4-10	Porosity Distribution	20
5-1	Design Considerations for Calculating Snatch Force at Line Stretch, Due to Mortar Firing Downward.	21
8-1	Design of the 55-ft-dia. 54-gore Ringsail Parachute. (See Pioneer Drawing 1.5438.)	25
8-2	Inflated Parachute Radius and Force vs Time	31
10-1	Weight Breakdown for Center-of-Gravity Calculations	42
10-2	Location of Weights for "Strung-out" Parachute	43
10-3	Location of Weights for Inflated Parachute	45
11-1	Parachute Assembly	48

LIST OF TABLES

<u>Table</u>	<u>Title</u>	Page
4-1	Sail Dimension for the 55-ft Ringsail	9
8-1	Strength Loss and Safety Factors	26
8-2	Canopy Loading	30
9-1	Weight Breakdown	40
10-1	Calculation of Center-of-Gravity for "Strung-out Parachute	, 44 - 44
10-2	Calculation of Center-of-Gravity for Inflated Parachute	46
11-1	Characteristics of 55-ft D_0 Ringsail Parachute Assembly	49
11-2	Properties of Fabric Circumferential Rings	. •
	Associated with 55-ft D _o Ringsail Parachute Canopy	50
11-3	Summary	55

1.0 INTRODUCTION

This report is submitted in accordance with paragraphs 1.16 and 1.17 of Section B of the Work Statement contained in Martin Company Procurement Specification No. LY 152450, Revision E, dated August 3, 1967.

The subject parachutes were designed and manufactured under Martin-Marietta Corporation Contract No. RC7-709039.

2.0 DESIGN SPECIFICATION

The parachute system described in Martin Company Procurement Specification No. LY 152450 is for use in the balloon-launch phase of the Planetary Entry Parachute Program.

The system, as specified, consists of

- (a) parachute,
- (b) riser, bridle and fittings,
- (c) deployment bag, and
- (d) miscellaneous supporting hardware.

2.1 Parachute

The specified parachute is a ringsail type having the same basic geometric propertions as the 84-ft ringsail parachute, Pioneer Dwg. No. 1.562 except that the geometric porosity in the crown of the parachute is 0.8% to 1.0% of the nominal surface area. Material porosity is disregarded. The total geometric porosity is 15% ±0.5% of the nominal surface area of the parachute.

The parachute is as large as possible and has no reefing system. The weight of the parachute is no less than 70 lb and no more than 74 lb.

The color of the canopy is natural with a blue stripe on the inside that is approximately 6 in. wide at the skirt and tapers between the radials near the vent. Blue stripes approximately 3 in. by 12 in. are placed on the inside of the canopy skirt on both sides of all radials and at the center of the gore.

2.2 Riser System and Deployment Bag

The riser system and deployment bags are in accordance with Fig. 1, p. 8 of the specification (LY 152450). A knife

is attached to the main riser to cut the bag-mouth tie, which is at least 300-1b test line. A nylon conduit is added to one leg of the bridle to contain wires for a tension-measuring device. The deployment bag is lined with Teflon-coated fabric and has a petal-type opening and flaps to protect the riser during mortar ejection. The parachute is delivered packed in its deployment bag, which is suitable for firing in the 2-ft³-capacity Irving Type II mortar.

2.3 Deployment Conditions, Weight, and Miscellaneous Requirements

The specified payload weight is 600 lb, and the weight of the complete parachute system is no greater than 80 lb.

The parachute is capable of opening without structural failure at mach 1.6, dynamic pressure of 13 lb/ft², and a mortar ejection velocity of 130 ft/sec.

2.4 Miscellaneous Requirements

The complete parachute system, as specified, is capable of deployment and of sustaining opening loads without structural failure after being subjected to 125°C for 120 hr while packed.

All structural fabric material chosen for the parachute system is Dacron except the bridle (vehicle-attachment riser), which is nylon. All lines, tapes, webbings, and threads are heat-stabilized, high-elongation Dacron material; high-tenacity type was preferred. The canopy cloth's air permeability does not exceed 200 ft³/min/ft² at a pressure differential of 1/2 in. of water across the cloth. It was permissible to use MIL-C-25361, Type III Dacron webbing for the main riser. This is not a heat-stabilized webbing.

Each component part that can be disconnected from the system has an identifying serial number.

The system, packed for service, is shipped in a reusable container, which prevents the parachute pack from growing in size during shipping and storage. This container and any packing material is capable of the same sterilization treatment as the system. The container has a removable lid on one end and is cylindrical (inside diameter $11.5^{+0}_{-1/8}$ in., and $29.5^{+0}_{-1/8}$ in. long inside when the lid is fastened). The closed end has a threaded fitting which will accept an air fitting for the possible application of air pressure to eject the parachute. A $2^{+1/8}_{-0}$ -in.-wide slot extending $1^{+1/8}_{-0}$ in. below the inside of the fastened lid is cut into the cylindrical part of the container from the open end of the container.

3.0 DESIGN DATA

The parachute system was designed to meet the requirements given in Section 2.0 and consists of a parachute, main riser, vehicle-attachment riser (bridle), and a deployment bag.

The parachute is a 55-ft-nominal-diameter ringsail with 54 gores, and 65-ft-long suspension lines sewn onto six metal links.

The basic shape of the uninflated parachute is approximately a quarter-sphere.

The canopy has 10 rings and sails, of which sail 8 was omitted to form a 27-1/2-in. gap.

The total area of the canopy is 2376 ft². Using a C_D of 0.62, the estimated drag area for the chute is 1473 ft².

The total geometric porosity (λ_g) is 14.6%. The geometric porosity of the crown area (λ_{g_c}) is 0.94%.

4.0 GORE LAYOUT AND PARACHUTE CONFIGURATION

The parachute type, diameter, and geometric porosity were specified by Martin Company Procurement Specification No.

LY 152450. The parachute requested was to be a ringsail type with a 55-ft-nominal-diameter and 15% geometric porosity.

Pioneer selected a 54-gore configuration as the optimum.

The area S_{Ω} of the canopy was calculated from the equation

$$S_0 = \frac{\pi}{4} \times D_0^2 = \frac{\pi}{4} \times 55^2 = 2376 \text{ ft}^2$$
,

where D_o is the nominal diameter. The stipulated ringsail parameters were then applied to determine the diameter of the sphere on whose surface the required canopy area would subtend a 108° vertex angle (see Fig. 4-1).

4.1 Basic Gore Geometry

Ringsail parachutes have typically presented many problems arising from infolding at the skirt caused by the excess material required for fullness. To eliminate such excess, and thereby to minimize infolding, it was decided to increase the above-calculated canopy area in the ratio of 58:54 and to recalculate the sphere diameter accordingly. The gore parameters were then calculated as if the parachute were to have 58 gores. However, to keep to the proper canopy area, only 54 gores were assigned to each parachute.

Hence, the area used to calculate the radius of the sphere was

$$A = 2376 \times \frac{58}{54} = 2552 \text{ ft}^2$$
.

Referring again to Fig. 4-1, we can see that

$$A = 2552 = 2\pi Rh$$

and we compute as follows.

Fig. 4-1. Basic ringsail geometry.

h = 0.412R;

Substituting this value of h, we find

 $2552 = 0.824\pi R^2$;

 $R^2 = \frac{2552}{\pi \times 0.824}$;

R = 31.397 ft.

Total height of gore = $31.397 \times 12 \times 54^{\circ}$ (radians) = 355.09 in.

The method of calculating the basic gore dimensions and the resultant dimensions are illustrated in Fig. 4-2.

Pollowing calculation of the basic gore dimensions, the number of sails was determined. It was decided to make the parachute with 10 sails, the upper four were actually rings separated by slots. The widths of the four slots, from the top down, were 1.5, 1.25, 1.0, and 0.75 in., respectively. To achieve the required 15% minimum geometric porosity, the 8th sail was omitted. All sails except sail 10 (which was 33 in. high) and all rings were 34 in. high (finished). Since the distance up the center of the gore was known for the leading and trailing edges of each sail (and ring), it was possible to calculate the gore width at all necessary points by straight-line interpolation between the closest two values taken from Fig. 4-2.

After the basic ring and sail dimensions were calculated, fullness was added. The basic ring and sail dimensions, with and without fullness, are shown in Table 4-1, and the fullness allowed is charted in Fig. 4-3.

Next, the pattern dimensions (including seam allowances) were calculated. The final pattern dimensions are summarized in Fig. 4-4.

TABLE 4-1 SAIL DIMENSIONS FOR THE 55-ft RINGSAIL

4年

j

		Lower edge	agp			Upper edge	edge	
	Height	Width,	, 1n.		Height	Width,	ın.	;
Sail no.	up gore, in.	With- out full- ness	With full- ness	Full- ness	up gore, in.	With- out full- ness	With full- ness	rull- ness,
10	0	33.019	35.661	8.0	33.0	30.774	30.774	0
6	33	30.774	32.959	1.7	67.0	28.237	28.237	0
8		0	H	E4	E	0		
7	94.5	26.028	27.407	5.3	128.5	23.085	23.085	0
9	128.5	23.085	24.101	7.7	162.5	19.958	20.038	4.0
ĸ	162.5	19.958	20.657	3.5	196.5	16.669	16.902	1.4
#	197.25	16.594	16.826	1.4	231.25	13.166	13.350	7.4
m	232.25	13.063	13,246	1.4	266.25	9.530	9.663	7.4
N	267.5	9.400	9.529	1.4	301.5	5.785	2.866	7.4
н	303.0	5.623	5.702	1.4	337.0	1.960	1.960	0

No. of gores	Area S _o , ft ²
54	2376
58	2552

R = 31.397 ft

= 376.762 in.

$$\beta = \frac{360}{2 \times 58} = 3.10344^{\circ}$$

= 0.054165 rad.

a, deg	cos a	a, rad	Arc a, in.*	Arc a - 236.720 in.	Arc β, in.†	2 arc ß, in.
90	0	1.5708	591.816	355.096	0	0
87°14.8'	0.04801	1.52276	573.720	337.000	0.980	1.960
85	0.0872	1.4835	558.927	322.207	1.780	3.559
80	0.1737	1.3963	526.073	289.353	3.545	7.090
75	0.2588	1.3090	493.182	, 256.462	5.281	10.563
70	0.3420	1.2217	460.290	223.570	6.979	13.959
65	0.4226	1.1345	427.437	190.717	8.624	17.248
60	0.5000	1.0472	394.545	157.825	10.204	20.407
55	0.5736	0.9599	361.654	124.934	11.706	23.411
50	0.6428	0.8727	328.800	92.080	13.118	26.236
45	0.7071	0.7854	295.909	59.189	14.430	28.860
40	0.7660	0.6981	263.720	26.298	15.632	31.264
36	0.8090	0.6283	236.720	0	16.510	33.019

^{*}Arc α = R α , where R is in inches and α is in radians. †Arc β R β cos α , where R is in inches and β is in radians.

Figure 4-2. Basic gore dimensions for the 55-ft ringsail.

Sail	. Н	. A	·B	C
1	36.0	4.168	8.090	36.053
2	34.5	8.201	11.970	34.551
3	34.5	12.051	15.738	34.549
4	34.5	15.790	19.367	34.546
5	34.5	19.393	23.256	34.554
6	34.5	22.573	26:753	34.563
7	34.5	25.663	30.110	34.572
8	. 0	M I	T T	E D
9	34.5	30.888	35.746	34.585
10	34.5	33.461	38.642	34.597

Figure 4-4. Ring and sail patterns for the 55-ft ringsail. Dimensions are given in inches.

4.2 Geometric Porosity

This section presents the calculations required to yield a 55-ft-diam ringsail parachute with a total geometric porosity of 15%, and a crown-area geometric porosity of 0.90-0.95% as established by Martin Marietta. The method used is to determine the total area of a single gore (from the basic gore dimensions calculated by the method described in Section 4.1) and then to compare that area with the total open area in the gore.

To determine the total area of a gore, we assume that a gore comprises a number of trapezoids and a terminal triangle (at the vent end). Figure 4-5 (not to scale) illustrates how this assumption can be applied to the 55-ft parachute. All the dimensions shown are taken directly from the geometry calculations in para. 4.1 and are in inches.

The area of each trapezoid and the area of the triangle were calculated and summed to yield the total gore area.

The open area was calculated after the number of sails, their size, and the percentage of fullness allowed had been determined (see Section 4.1). The open area can be thought of as comprising four types:

- (a) the vent (the area covered by the vent lines must be subtracted from the total),
 - (b) the slots in the crown area (assumed trapezoidal),
- (c) the 8th sail (which was omitted, leaving an assumedly trapezoidal gap surmounted by a sail scoop), and
- (d) the sail scoops (treated here as triangles).

 In flight, the sail scoops will probably assume crescent shapes but may at any given time resemble anything from a thin crescent to an ellipse. Seventy-five percent of the triangular

Figure 4-5. Basic gore of the 55-ft ringsail, for porosity calculations.

shape is taken as a reasonable approximation. Possible and assumed shapes are illustrated in Fig. 4-6.

Total geometric porosity $\lambda_{\mathbf{g}}$ (in percent) is calculated from the formula

$$\lambda_{g} = \frac{\text{(total open area)} \times 100}{\text{(total area)}}$$
 (4-1)

Crown-area geometric porosity $\lambda_{\mathbf{g}_{\mathbf{c}}}$ (in percent) is calculated from the formula

$$\lambda_{g_c} = \frac{\text{(open area of vent + slots) x 100}}{\text{(total area)}}$$
 (4-2)

The calculations made for the 55-ft-dia. ringsail parachute follow.

Total area of one gore (see Fig. 4-5 for dimension references).

$$(26.298 \times 32.1415) + 32.891 (30.062 + 27.548 + 21.909)$$

- + 8.8265) + 32.854 (24.8235 + 5.3245) + 32.892 (18.8275
- $+ 12.261) + (32.853 \times 15.6035) + (14.793 \times 2.7595)$
- + $(18.096 \times 0.980) = 6335.25 \text{ in}^2$.

Total open area of one gore = (a) + (b) + (c) + (d), where all dimensions are obtained from the ring and sail dimensions calculated in Section 4.1:

- (a) Vent (less vent-line blockage)

 ½ [(base) (vent-line blockage)]

 x [(alt.) (vent-line blockage)]

 = ½ (1.96 0.15625) x (18.096 0.3125)

 = 16.04 in².
- (b) Slots (less radial-tape blockage)

 (0.75 x (16.864 0.75)) + (1.0 x (13.298 0.75))

 + (1.25 x (9.596 0.75)) + (1.5 x (5.784 0.75))

 = 43.24 in².

(c) 75% of area of this shape assumed for porosity calculations

Fig. 4-6. Scoop shape. All dimensions are in inches and are taken from para. 4.1. They are for the trailing edge of sail 10 and the leading edge of sail 9.

From equation (4-2):

Crown-area geometric porosity
$$(\lambda_{g_c}) = \frac{(a+b) \times 100}{\text{total area}}$$

$$\lambda_{g_c} = \frac{59.28 \times 100}{6335.25} = 0.94\% \text{ (see Fig. 4-7)}.$$

(c) Omitted 8th sail (less radial-tape blockage)(see

Fig. 4-8)

$$x_1 = [13.3285^2 - 12.639^2]^{\frac{1}{2}} = 4.23138;$$

$$area_1 = 27.5 \times \frac{1}{2} (27.487 + 25.278) + 3/4 (12.639 \times 4.23138) = 753.02 in^2.$$

(d) Sail scoops (less radial-tape blockage) (see Fig. 4-9)

$$x_2 = [16.1045^2 - 15.012^2]^{\frac{1}{2}} = 5.83050;$$
 $area_2 = 3/4 (15.012 \times 5.8305).$
 $x_3 = [11.6755^2 - 11.1675^2]^{\frac{1}{2}} = 3.40650;$
 $area_3 = 3/4 (11.1675 \times 3.4065).$
 $x_4 = [9.9535^2 - 9.644^2]^{\frac{1}{2}} = 2.46280$

 $area_h = 3/4 (9.644 \times 2.4628).$

Total area of scoops:

= 111.99 in².

Total open area:

16.04 + 43.24 + 753.02 + 111.99 = 924.29 in².

Hence, from Eq. (4-1), the percentage of total open area, λ_{α} , is

$$\frac{924.29 \times 100}{6335.25} = 14.6\% \text{ (see Fig. 4-10)}.$$

WIII III III														
													£ 7	
	?												3	1.5
tt 5	3								11111	1			\	
	1. No.													
3 0													lg :	
S	20			*!!:.! <i>::</i>	- 7								3	
		-1::=1::1::1::1::1::1::1::1::1::1::1::1::			- 7						o -		3	
रेंग					7								\$	
57.				O,	J								8	
SUTH				1							0			
				/		H., L.	: HE.	-			(P			
HORSE	1,4		+ - /										2 =	
			O_{I}											
	<		1								2		7	
			/										Q	
		/					/						7	::-: ::::
			+ $+$ $+$ $+$				/						3	
						7					v		3	
		o'			-01117	/							Ŏ !	
		7							; - I:=:				18	
					-/						0		3	
					/						Ň		93	
	7												1	
				/							L		P s	
) ()							1111111			0		ià Y	
/													Q.	
			4		1, 1, 1, 1, 1		::1:					0	63	
/													6 3	
()		1									(0)		27.56	
ente del entirer	daardaa ahaar												18 8	
		4		=1-4				111111					G	
											0		3 0	
											N.		SEOM	
													4	
													A	
											Q			
													4	
													1	F
W		à	h.			3		ካ			0		Ÿ	
'n		O N			•			-c						
													8	
				S	10	-	∍¢,						Ų.	
				7411111			1							73
			1.1.										1::::::::::	H

Fig. 4-8. Geometry of omitted 8th sail.

Fig. 4-9. Geometry of the sail scoops.

Fig. 4-10. Porosity distribution.

5.0 SNATCH FORCE (SEE FIG. 5-1)

$$V_{t} = \left(V_{m}^{2} + 2as\right)^{\frac{1}{2}}$$

$$= (130^{2} + 2 \times 32.2 \times 67.55)^{\frac{1}{2}}$$

$$= 145.8 \text{ ft/sec.}$$

$$P_{s} = \int_{-\infty}^{(W_{c}/g)} V_{t}^{2} \times (\text{no. of gores}) \times (\text{lin})^{\frac{1}{2}} \left(\frac{1}{2} + \frac{1}{2}\right)^{\frac{1}{2}} \left(\frac{1$$

$$P_{s} = \left[\frac{(W_{c}/g)V_{t}^{2} \times (\text{no. of gores}) \times (\text{line strength})}{(t_{s} + t_{r}) \times (\% \text{ elongation})} \right]^{\frac{1}{2}}$$

$$= \left[\frac{(70/32.2) \times 145.8^{2} \times 54 \times 605}{78 \times 0.30} \right]^{\frac{1}{2}}$$

$$= 8032 \text{ lb.}$$

Figure 5-1. Design considerations for calculating snatch force at line stretch, due to mortar firing downward.

6.0 OPENING FORCE

Computed trajectories were available for a 65-ft-diam. ringsail with C_D = 0.62 and inflation time = 0.5 sec, at a dynamic pressure of 12 lb/ft², and a 60-ft-diam. ringsail with C_D = 0.62 and inflation time = 0.5 sec, at dynamic pressures of 12 and 13 lb/ft². These trajectories are included in Appendix A. When it was found that the maximum weight requirement necessitated a size reduction to 55-ft diam., the schedule did not permit time out for more computer work. In view of the available data, it was decided to scale down the maximum force obtained for the 60-ft parachute at 13-lb/ft² dynamic pressure in the same ratio as the differential between the 65- and 60-ft-diam. parachute forces at 12 lb/ft². This value then became the predicted opening force for the 55-ft-diam, parachute. The calculations follow.

1. At 12 lb/ft²

For for 65-ft parachute = 20,547 lb

 F_o for 60-ft parachute = 17,761 lb

20,547 x
$$\left(\frac{60}{65}\right)^2$$
 x k = 17,761 lb

k = 1.01450

2. At 13 lb/ft²

Fo for 60-ft parachute = 18,580 lb

$$F_0$$
 for 55-ft parachute = 18,580 x $\left(\frac{55}{60}\right)^2$ x 1.01450

= 15.838 lb.

7.0 PARACHUTE SIZING

The procurement specification required the parachute to be as large as possible to meet the specified deployment and weight conditions. Since the schedule did not permit waiting to obtain lighter-weight materials, it was necessary to use materials already in stock. Hence, the actual size of the parachute manufactured, 55-ft-nominal-diameter, was controlled by the weight limitation of 70-74 lb for the parachute.

8.0 STRESS ANALYSIS

The calculated margin-of-safety values are summarized in Fig. 8-1 and the design factors used are given in Table 8-1.

<u>Ultimate suspension-line and vent-line load</u> (see Fig. 8-1).

There are 54 gores, each with an ultimate tensile strength of
605 lb. Estimated ultimate suspension-line load is

Allowable suspension-line load. The design factor of 1.935 is taken from Table 8-1. Estimated allowable suspension-line load is

Margin of safety for suspension lines.

Ultimate radial-member load. Assume that all radial loads are carried by 54 radial tapes in tension (i.e., the canopy cloth does not carry any radial load).

Fig. 8-1. Design of the 55-ft-dia. 54-gore ringsail parachute. (Pioneer drawing 1.5438.)

TABLE 8-1 STRENGTH-LOSS AND SAFETY FACTORS

Symbol	Function	Main seams, rings and sails	Radial tape	Susp. lines	Upper	Bridle	Vent band and tape splices
Ħ	Joint efficiency	08.0	1.00	96.0	08.0	0.93	0.95
g	Heat loss	06.0	06.0	06.0	06.0	1.00	06.0
•	Abrasion	96.0	96.0	96.0	96.0	96.0	96.0
**	Safety factor	1.50	1.50	1.50	1.50	1.50	1.50
v	Line convergence	N/A	N/A	1.04	N/A	1.04	N/A
4	Asymmetrical loading	1.05	1.05	1.05	1.05	1.05	1.05
Design i	Design factor icf	6/2'2	1.823	1.995	2.28	1.83	1.92

Allowable load for radial members. The design factor of 1.95 is taken from Table 8-1.

$$P_{allow} = \frac{P_{ult}}{design factor}$$
$$= \frac{29,700}{1.823}$$
$$= 16,292 lb.$$

Margin of safety for radial members.

M.S. =
$$\frac{\text{load allowable}}{\text{worst-case load developed}}$$
 -1.0
= $\frac{P_{\text{allow}}}{F_{\text{o}}}$ -1.0
= $\frac{16,292}{15,838}$ -1.0
= 0.0286 or 2.86%.

CALCULATE LOAD ACTING ON MAIN SEAM.

EXPLANATION OF TABLE 8-2

- 1. For selected rings, determine (2) cloth area including fullness, less seam allowance and take-up.
- 2. From spherical coordinates of basic gore dimensions, we obtain total area of crown for combination of ring selected.
- 3. Assuming that crown inflates with a hemispherical profile (a good assumption since evaluation of ringsail parachute profiles indicate the profile is very close to a hemisphere), we calculate a radius.
- 4. From Fig. 8-2, for a given radius, we determine the corresponding force. (A good method since comparison of ring-sail profile to force indicates our assumption of loads vs profile for this configuration is good.)
- 5. By dividing the force by the cloth area that the force acts on, we can determine the pressure acting on the selected rings.
- 6. By taking the product of the pressure and radius, we obtain a load in lb/in. at a given point on the main seam. Worst case is for case 4, where load is 14.428 lb/in. = P_{dev}. Assume maximum load is carried by cloth above gap.

Allowable load for canopy cloth.

 $=\frac{60 \text{ lb/in}}{2.279}$

= 26.33 lb/in.

Margin of safety for cloth.

M.S. =
$$\frac{P_{\text{allow}}}{P_{\text{dev}}}$$
 -1.0 = $\frac{26.33 \text{ lb/in.}}{14.428 \text{ lb/in.}}$ -1.0

- **=** 1.825 **-**1.0
- = +82.5%.

Apportion F_o to canopy shape, during inflation process, to determine worst case for load on main seam.

TABLE 8-2 CANOPY LOADING

1	2	3	4	5	6	7
Case	Cloth area including fullness, less seam allow. and take-up, in2	Area of crown, in ²	Redius in.	F _O 1b	5 + 2 lb/1n ²	6 x 4 lb/in.
1	21,166	22,338	59.625	1230	0.05811	3.465
2	69,898	71,775	106.880	6050	0.08655	9.250
3	144,897	145,621	152.238	13180	0.09096	13.848
4	191,249	190,723	174.225	15838	0.08281	14.428
5	247,427	285,234	213.064	13900	0.05617	11.968
6	306,620	342,104	220.00 (= D _p)	13550	0.04419	9.722

Load developed in skirt band.

For convenience, we assign F_y forces acting toward the C/L of the parachute-values and + values to the forces acting outward on the cloth panels.

The tension force (T) in the skirt band is a function of the force + F_y and the $k\alpha$ taken by the scallop at the skirt.

Allowable load in skirt band

Margin of safety for skirt band

M.S. =
$$\frac{P_{\text{allowable}}}{P_{\text{developed}}} - 1.0$$

= $\frac{286.4}{234.2} - 1.0 = 1.223 - 1.0 = +22.3\%$

Load developed in vent band.

From calculation for skirt band, $F_y = 82.6$ lb. Using a vent tape 7% shorter than constructed diameter of the vent, we are able to carry at least 20% of the F_y load in the vent tape.

Cloth

Radial Member

Vent Band

Vent Tape (or line)

Free-body Diagram

F_{vent} = F_y x .80

= 66.08 lb

Use the following formula
We solve for P_{dev}

$$P_{\text{dev}} = \frac{P_{\text{vent}}}{2\sin \frac{360^{\circ}}{2(\#\text{gores})}}$$

$$= \frac{66.08 \text{ lb}}{2\sin \frac{360^{\circ}}{2x54}}$$

$$=\frac{66.08}{2sin3.33}$$

$$=\frac{66.08}{0.11628}=568.28$$
 15

Load allowable for vent band

$$P_{\text{allow}} = \frac{\text{ult. t.s. tape}}{\text{Design Factor}}$$
$$= \frac{3 \times 550 \text{ lb}}{1.92} = 859.4 \text{ lb}$$

Margin of safety for vent band

M.S. =
$$\frac{P_{\text{allowable}}}{P_{\text{developed}}}$$
 -1.0 = $\frac{859.4}{568.28}$ -1.0 = 1.512 -1.0 = +51.2%.

$$= \frac{42,000}{2.28} = 18421$$

Margin of Safety

M.S. =
$$\frac{P_{allow}}{P_{dev}}$$
 -1.0 P_{dev} = P_{o}

$$= \frac{18,421}{15,838} - 1.0$$

Calculate Pallow on two legs

$$P_{all} = \frac{4ply \times 10,000 \text{ lb/ply}}{Design Factor} = \frac{40,000}{1.83} = 21,858 \text{ lb}$$

Calculate Margin of Safety (Two Legs)

M.S. =
$$\frac{P_{all}}{F_{o}^{max}}$$
-1.0 = $\frac{21.858}{15.838}$ -1.0 = 1.380 -1.0 = 38.0%

Calculate Pallow (Equal Load)

$$P_{all} = \frac{6 \text{ ply x 10,000 lb/ply}}{\text{Design Factor}} = \frac{60,000}{1.83} = 32,787 \text{ lb}$$

Calculate M.S. (Equal Load)

M.S. =
$$\frac{P_{all}}{F_{o} \max}$$
 -1.0 = $\frac{32,787}{15,838}$ -1.0 = 2.070 -1.0 = +107%.

9.0 WEIGHT BREAKDOWN

The weight of the complete parachute system supplied by Pioneer Parachute is 77.25 lb and is itemized in Table 9-1. This value meets the 80-lb maximum weight requirement. The parachute itself weighs 70.5 lb and meets the 70-lb minimum-weight requirement.

The attached riser weighs 2 lb, the vehicle-attachment riser (bridle) weighs 3.063 lb and the deployment bag weighs 1.688 lb.

TABLE 9-1 WEIGHT BREAKDOWN

Item	Qty. (yd or yd ²)	Unit weight oz/yd or oz/yd²	Total weight (lb)
1.0 Parachute			
1.1 Cloth	275	2.0	33.564
1.2 Radial tapes	532	0.26	8.645
1.3 Skirt reinforcing	55	0.26	0.887
1.4 Vent reinforcing	9	0.26	0.146
1.5 Suspension lines	1182	62 yd/1b	19.063
1.6 Vent lines	30	62 yd/1b	0.488
1.7 Ring and sail reinforcings	456	0.16	4.560
1.8 Blue striping	6	1.10	0.408
1.9 Radial-loop buffer	. 9	0.14	0.079
1.10 End fittings	6ea	~1-3/4 oz ea	0.684
1.11 Thread	appro	ximately	2.000
SUB TOTAL - ACTUAL			70.50
2.0 Attached Riser	r		2.00
3.0 <u>Vehicle-attachment Riser (Bridle)</u>			3.063
4.0 Deployment Bag			1.688
TOTAL WEIGHT			77.25

10.0 CENTER OF GRAVITY

10.1 Packed Parachute

The center of gravity of the packed parachute is assumed to be at the center of the deployment bag.

10.2 "Strung-out" Parachute

The weight breakdown for the center-of-gravity calculations for the "strung-out" parachute is shown in Fig. 10-1 and the locations for the weights and the center-of-gravity are given in Fig. 10-2.

The calculations are shown in Table 10-1.

10.3 Inflated Parachute

The weight breakdown for the center-of-gravity calculations for the inflated parachute is shown in Fig. 10-1, and the locations for the weights and the center of gravity are given in Fig. 10-3.

The calculations are shown in Table 10-2. The center of gravity of the included air mass is as follows.

r = 18.838 ft

c.g. = (3/8)r + 903.02 (from Fig. 10-3) = 987.79 in. The weight of the included air mass is as follows.

 $w = \rho \times (2/3) \pi r^3$

at 128,000 ft altitude

w = 0.125 lb.

Figure 10-1. Weight Breakdown for Center-of-Gravity Calculations

Figure 10-2. Location of Weights for "Strung-out" Parachute

Calculation of Center-of-Gravity for "Strung-out" Parachute

Lengths taken from Fig. 10-2
Weights taken from Fig. 10-1

TABLE 10-1

Length (1) in.	Weight (w) lb	(1) x (w) = (m) in-lb	
40.0	3.063	122.52	
121.0	2.684	324.76	
546.0	19.063	10408.40	
953.0	9.614	9162.14	I(w) = 76.562 lb
987.0	8.287	8179.27	I(m) = 66502.16 in-1b
1048.5	7.205	7554.44	$\frac{\Sigma(m)}{\Sigma(w)} = 868.6 \text{ in.}$
1082.5	6.214	6726.66	
1116.5	5.464	6100.56	Center-of-gravity is at 868.6 in. (marked on
1151.25	4.701	5412.03	Fig. 10-2.)
1186.25	3.957	4693.99	
1221.5	3.175	3878.26	
1256.5	3.135	3939.13	

Fig. 10-3. Location of weights for inflated parachute.

Calculation of Center-of-Gravity for Inflated Parachute

Lengths taken from Fig. 10-3 Weights taken from Fig. 10-1

TABLE 10-2

	(1) x (w) = (m) in-lb	Weight (w) lb	Length (1) in.
	122.52	3.063	40.0
i	324.13	2.684	120.765
	10089.57	19.063	529.275
$\Sigma(w) = 76.687 \text{ lb}$	8844.92	9.614	920.004
$\Sigma(m) = 63535.58 in-$	7902.38	8.287	953.587
$\frac{\Sigma(m)}{\Sigma(w)} = 828.51 \text{ ir}$	7283.77	7.205	1010.932
	6459.35	6.214	1039.483
Center of gravity in at 828.11 in. (mark	5818.84	5.464	1064.942
Figs. 10-3 and 11-1	5110.87	4.701	1087.187
*Included air mass	4373.27	3.957	1105.199
	3551.08	3.175	1118.451
	3531.41	3.135	1126.448
	123.47*	0.125	987.79

a = 76.687 1b n) = 63535.58 in-1b $\frac{\Sigma(m)}{\Sigma(w)} = 828.51 \text{ in.}$ nter of gravity is
828.11 in. (marked on gs. 10-3 and 11-1). APPENDIX A
COMPUTER RUNS

ZODO			INT. TIME		9	•		-				
	13	29.0	0.5 SEC.	IZ PSF								l
		col	CLZ	ZDS	CL3	. 503	כרת	13° C	T.	M 04	WEIGHT PRINT	
	00	1.50	000	12.00	00.	00.	000	. 00	000		75.00	•05
		1.50	0	00.04	00	00	00.	00	00		75.00	5
		1.50	00	160.00	00.	00.	000	00.	00.	9 9	675.00	
		1.50	00	300.00	00.	00	00.	00.	00.		75.00	• 0.5
		1.50	00.	550,00	00.	00.	00•	00.	• 00		75.00	50.
		1.50	00.	930,00	00.	00.	00•	00.	00.		75.00	
	000	1 200	000	1000000	00.	00.	00	000	000		75.00	Su.
		1.50	00.	2060.00	00.	00	000	00.	00		75.00	20.
	00•	1.50	00.	2060,00	00.	00.	00.	00•	00.		75.00	CD.
۲	CCM1 C	CDMI	CLM2	CDMZ	CLM3	CDM3	CLM4	CDM4				
		1.00	1.00	1.00	1.00	1.00	1.00	1.00				
000	SEC. FT.	\$1= \$2=	1.00	50.	INTEGRATION	TON INT.	50.					
1565,00	FY,/SEC. FY.	S3::	1,00	50. FT					-			
60.00	DEG.	HS= TS=	00,1	0 FT. 0 SEC.								
VELOCITY	ACCELERATION		AL TITUDE	RATE OF CLIMB	4B DYNAUTC	n.	PATH ANGLE	WACH NO.	RANIGE	67	53	2
1665.00	-28.75			441.		12.	•	1.58	00.	ļ		c. (
1663,56	-35.78		128072.09	1440.12		12,32	59,93	1.57	41.64	167.8	0	C
1659.17	-79		8216.00	1435,51		12,18	59,91	1.57	124.86	I .		C C
5.22	-120	12	6287.70	1431,69		12.08	59.88	1.57	166.40	- 1		ξ.
1649,19			128359,36 128430,66	1425.07		11.78	59.82	1.55	249.02			5
1622,55	-538		128501,52	1402.23		11.50	59.79	1.53	289.84			
0.05	ł		6571.63	1378.92		11.10	59.73	1.51	369.35	- 1		
17.76	-1007.88		128707.97	1310,48		76.6	59,70	1.43	407.63			٦
1468,95			128773.49			9,32	59.67	1,39	27.444			
12.62	-		98000000	1220.04		8 1 A	59.61	1.30	515.60	1		e.
1339,86			8957.82	1155,32		7.69	59,57	1.27	549.52			9
1301.77			9015.58	1122,07		7.24	59.54	1.23	582.52			•
1265,79	-698,77	12	129071,69	1090,65		6.83	59.50	1.20	614.64	- 1		
1231,75	199-	12	9126.22	1060.92		ນ 4 ນີ້ ເ	50.00 10.00	1.10	676.44			
1168.89			29230.90	1005.96		5.78	59.39	1.10	706.20	1		6.
10.70	-568.05		29281.20	980.51		5,49	59,35	1.08	735,26	1	-	

CD	CD2 200 200 200 200 200 200 200 200 200 2	
00 00 00 00 00 00 00 00 00 00 00 00 00	317 [8]	112 00 40 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00	377 🖺	1753.00 1753.0
00 00 00 00 00 00 00 00 00 00 00 00 00	317 🖁	11450.00 1445.00 1445.00 1450.00 1753.
00 00 00 00	344	200.00 1145.00 1753.00 1753.00 1
00 00 00 00 00 00 00 00 00 00 00 00 00 00	ST IN	145.00 145.00 1753.00 1753.00 1753.00 1753.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
00 00 00 00 00 00 00 00 00 00 00 00	344	1145.00 1753.00 1753.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
00 00 00 00 00 00 00 00 00 00 00 00	3-1- K	
10 .00 .00 S CDM3 CLM4 CD	317 \$	5 4 4 FEEE
S COM3 CLM4 CD	3-1- 1	5
	T EN	
100 1.00 1.00	INT	
EGRATION INT.		
		ن، ا
RESSURE PATH	8.1	RATE CF CL
12.32 59.96	:	1440.12
.25 59		7
.19 59	0	
96		1426.0
.78 59.	8	-
50 59	m r	1402.2
.66 59		1353,51
.13 59.70	0	1320,8
.55	ro (1283,6
52 50 64) D#	1248.5
.07 59.58		1183.66
.65 59.54		1153.70
27 59,51	6	1125.1
.91 59.47	03	1098.
52 52 43	13	1072.
, 6	60 F	•

046d

11.0 PARACHUTE ASSEMBLY MASS MOMENTS OF INERTIA

11.1 Parachute Assembly and Its C.G. Location

Figure 11-1 depicts the characteristics of a ringsail parachute assembly, which upon canopy inflation takes the shape of a hemisphere. Using axis A-A as a base reference the parachute assembly c.g. location can be expressed as

$$\bar{z}_{A-A} = [W_c + W_b)z_1 + W_s z_3 - W_r z_4]W_T$$
 (11-1)

For the 55-ft D_0 ringsail, Table 11-1 lists the evaluated characteristics. Use of the above equation results in

$$\bar{z}_{A-A} = 55.85 \text{ ft}$$
 (11-2)

The location of the system c.g. with respect to the y-y axis is therefore given by

$$\bar{z}_{y-y} = -[62.29 - 55.85] = -6.44 \text{ ft}$$
 (11-3)

11.2 Canopy Material

11.2.1 Roll Inertia of Fabric Circumferential Bands That

Make Up Canopy (with respect to z-z axis)

The roll mass moment of inertia can be shown to be

$$I_{z-z} = \Sigma[2/3\pi m_c r^4 \{ \sin \theta_2 (\cos^2 \theta_2 + 2) - \sin \theta_1 (\cos^2 \theta_1 + 2) \}]$$
 (11-4)

where m_c is the canopy material mass distribution per unit area and n is the number of circumferential rings.

Table 11-2 depicts the properties associated with the circumferential rings used on the 55-ft $D_{\rm O}$ ringsail parachute. Evaluation of equation (11-4) yields

$$I_{7-7} = 286.000 \text{ lb-ft-sec}^2$$
 (11-5)

FIGURE II-I PARACHUTE ASSEMBLY

TABLE 11-1 Characteristics of 55-ft Do Ringsail Parachute Assembly.

ITEM	W (lbs)	z (ft)	Description
W _C	41.565	72.18	Canopy Material
W _b	9.212	72.18	54 Radial Bands
Ws	19.063	31.15	54 Shroud Lines
w _R	5.745	-6.48	Riser Assembly
W _T	75.585	Z	Parachute Assem- bly Total Weight

angle made between any shroud line and system centerline = 16.6°

r, canopy inflated radius = 18.838 ft

L, shroud line length = 65.9 ft

TABLE 11-2

Properties of Fabric Circumferential Rings
Associated With 55 Ft Do Ringsail Parachute Canopy.

RING NO.	WT. (LB)	01 (deg)	θ ₂ (deg)
1	1.578	76.80	85.41
2	2.152	67.80	76.42
3	2.953	58.86	67.48
4	3.707	50.00	58.61
5	4.385	41.19	49.80
6	5.135	32.57	41.19
7	6.126	23.95	32.57
8	0		
9	7.117	8.36	16.96
10	8.412	0	8.36

Total 41.565 1b

Total area of 10 circumferential rings (total canopy cloth area) = 1990 ft²

$$m_c = \frac{41.565}{32.2 (1990)} = .649 \times 10^{-3} lb-sec^2/ft^3$$

11.2.2 Pitch and Yaw Inertia of Fabric Bands That Make
Up Canopy (with respect to x-x and y-y axis).

The pitch and yaw mass moment of inertia can be shown to be

$$I_{x-x} = I_{y-y} = \sum_{n=0}^{\infty} \left[m_n r^4 \pi \left\{ \frac{\sin \theta_2}{3} (\cos^2 \theta_2 + 2) - \frac{\sin \theta_1}{3} (\cos^2 \theta_1 + 2) \right\} + \frac{2}{3} \pi \left\{ \sin^3 \theta_2 - \sin^3 \theta_1 \right\} \right]$$
(11-6)

For the 55-ft Do ringsail parachute

$$I_{x-x} = I_{y-y} = 144.894 \text{ lb-ft-sec}^2$$
 (11-7)

With respect to the parachute assembly c.g. axis

$$I_{X-X} = I_{Y-Y} = 144.894 + \frac{41.565}{32.2} (6.44)^2 = 198.430 lb-ft-sec^2$$
 (11-8)

11.3 Radial Bands

11.3.1 Roll Inertia of Radial Bands on a Canopy (with respect to z-z axis).

The roll mass moment of inertia of the radial bands can be shown to be

$$I_{z-z} = nm_b r^3 \left\{ \frac{\theta_2 - \theta_1}{2} + \frac{\sin 2\theta_2 - \sin 2\theta_1}{4} \right\}$$
 (11-9)

where n is the number of radial bands under consideration. The mass distribution, $m_{\rm b}$, is the mass of the radial band per unit running length. Hence

$$m_b = \frac{W_b}{n g r \pi}$$
 (11-10)

For the 55 ft D_0 ringsail parachute under consideration herein there are 54 radial bands. Hence

$$m_b = \frac{2(9.212)}{54(32.2)(18.838)(3.14)} = .179 \times 10^{-3} \frac{1b \text{ sec}^2}{\text{ft}^2}$$
 (11-11)

Equation (11-9) when used for the 55 ft D_0 ringsail yields

$$I_{z-z} = 50.751 \text{ lb-ft-sec}^2$$
 (11-12)

11.3.2 Pitch and Yaw Inertia of Radial Bands on a Canopy (with respect to x-x and y-y axis).

The pitch and yaw mass moment of inertia can be shown to be

$$I_{x-x} = I_{y-y} = 2\sum_{1}^{p} m_b r^3 \left[\sin^2 \frac{\theta_2 - \theta_1}{2} + \frac{\sin 2\theta_2 - \sin 2\theta_1}{4} \right] + \frac{\theta_2 - \theta_1}{2} - \frac{\sin 2\theta_2 - \sin 2\theta_1}{4}$$
(11-13)

where, for the following,

р	Y
1	0°
2	6°40'
3	13°20'
4	20°
٠ 5	26°40'
6	33°20'
7	40°
8	46°401
9	53°20'
10	60 °
11	66°40'
12	73°20'
13	80°
14	86°40'

р	Y
15	93°20'
16	100°
17	106°40'
18	113°20'
19	120°
20	126°40'
21	133°20'
22	140°
23	146°40'
24	153°20'
25	160°
26	166°40'
27	173°20'

In the 55 ft Do ringsail parachute

$$I_{x-x} = I_{y-y} = 76.126 \text{ lb-ft-sec}^2$$

The pitch and yaw mass moment of inertia with respect to the system's c.g. is

$$I_{X-X} = I_{Y-Y} = 76.126 + \frac{9.212}{32.2} (6.44)^2 = 87.991 lb-ft-sec^2 (11-14)$$

11.4 Shroud Lines

11.4.1 Roll Inertia of Shroud Lines Making Up a Parachute (with respect to z-z axis).

The roll mass moment of inertia of a number of shroud lines can be shown to be

$$I_{z-z} = n \frac{m_S L^3}{3} \sin^2 x$$
 (11-15)

where m_s is the mass distribution of the shroud line per running unit length. The number of shroud lines is designated n.

$$m_{S} = \frac{W_{S}}{n L g} \tag{11-16}$$

In the 55 ft Do ringsail

$$m_s = \frac{19.063}{54(65.9)32.2} = .168 \times 10^{-3} \frac{1b \sec^2}{ft^2}$$
 (11-17)

Using equation (11-15) yields

$$I_{z=z} = 70.636 \text{ lb-ft-sec}^2$$
 (11-18)

11.4.2 Pitch and Yaw Inertia of Shroud Lines Making Up a

Parachute (with respect to B-B and C-C axis).

The pitch and yaw inertia can be shown to be

$$I_{B-B} = I_{C-C} = 4 \sum_{\Sigma [m_8 L^3]} \frac{\sin^2 \le \sin^2 y + \cos^2 x}{1 - \sin^2 x \cos^2 y}$$

$$\{\frac{\sin^2 \le \sin^2 y}{3} + \frac{7}{12} \cos^2 x - \frac{\cos x}{2}\}\}$$
 (11-19)

(NOTE: For this case $\frac{\sin^2 \sin^2 v + \cos^2 v}{1-\sin^2 \cos^2 v} = 1$).

Using equation (11-19) yields

$$I_{B-B} = I_{C-C} = 89.641 \text{ lb-ft-sec}^2$$
 (11-20)

With respect to the system's c.g.

$$I_{X-X} = I_{Y-Y} = 89.641 + \frac{19.063}{32.2}(24.7)^2 = 450.825 \text{ lb-ft-sec}^2$$
 (11-21)

TABLE 11-3 Summary

Member	I _{z-z} (lb-ft-sec ²)	$I_{X-X} = I_{Y-Y}$ (lb-ft-sec ²)
Canopy rings	286.000	198.430
Radial bands	50.751	87.991
Shroud lines	70.636	450.825

12.0 FABRICATION AND PACKING

12.1 Fabrication

The parachute-fabrication sequence was as follows.

- (a) Cut cloth and stamp ring or sail number in upperrighthand corner.
- (b) Baste rings or sails together down main seams, forming a series of complete rings from vent to skirt.
- (c) Attach circumferential reinforcing tapes to leading and trailing edges of rings and sails.
 - (d) Make skirt and vent hems.
- (e) Sew cotton loop buffer to radial tapes, folding the radial, ready for suspension-line-attachment loop formation.
- (f) Attach radial tapes, starting at the vent, matching marks to ring and sail edges. Insert the radial-gap-reinforcement tape through the gap and form the suspension-line-attachment loop when the skirt is reached.
- (g) Attach vent lines to radials at vent with zig-zag stitch pattern.
- (h) Add zig-zag stitching to radial at skirt, top and bottom of the gap, and through the slots between rings 1, 2, and 3.
- (i) Attach suspension lines to suspension-line-attachment loops and zig-zag stitch.
- (j) Fabricate the attached riser per Pioneer Dwg. 3.73454 and attach the six ends to the links using a four-point cross-stitch pattern.

12.2 PACKING PROCEDURE FOR 55-FT RINGSAIL ASSY. #19.1466 REV. ORIG

- 1. Check and record part number, serial number, and weight of canopy, deployment bag, and riser. (Use Form E-0082-AT/3.)
- 2. Verify that Pioneer and Martin inspection stamps are on canopy, on bag flap, and adjacent to assy S/N on bag.
 - 3. Stretch canopy and suspension lines under tension.
 - 4. Pleat canopy gores, 27 to each side, with #1 gore up.
- 5. Install 6-cord Dacron tie (approx. 6 ft long) to loop in bottom inside of bag. (Use bowline knot.)
- 6. Attach 6-cord Dacron tie through sleeve from bag to apex. (Use bowline knot.)
 - 7. Relieve tension.
- 8. Place dummy riser in deployment bag riser flap. Place bag in packing container, and secure with cord.
- 9. Fold panels #1 through #7 into bag and put under pressure.
 - 10. Relieve pressure, fold in panel #9, and reapply pressure.
- 11. Relieve pressure, fold in panel #10, and reapply pressure.
 - 12. Relieve pressure.
- 13. Gather suspension lines into bundles approximately.
 10 in. long and hold with rubber bands.
- 14. Lay in one level of bundled suspension lines. Remove rubber bands from laid-in level.
- 15. Lay in next level of bundled suspension lines at right angles to previous level. Remove rubber bands from laid-in level.

- 16. Continue to lay in bundles of suspension lines until all lines are stowed.
 - 17. Reapply pressure.
- 18. Fold in riser portion of canopy to cutter knife, and tie bag mouth with 550-1b Nylon cord sleeve, and attach red flag. (Use slip knot with locking loop.)
- 19. Feed 300-1b Dacron cord through mouth ties, and rig cutter knife.
 - 20. Fold in excess riser.
 - 21. Install lid and retaining bolts.

APPENDIX B

JOINT-TEST REPORTS

LABORATORY JOINT_TEST REPORTS

This appendix presents the results of laboratory strength-of-materials and structural-integrity tests required by Para.

1.15c of the Work Statement of Martin Marietta Procurement

Specification No. LY 152450, Rev. E, for Contract RC7-709039.

The tests reported on were made to ascertain the adequacy of the primary structural members of the parachute assembly, Pioneer Dwg. 19.1466. The style and format of these reports are in accordance with parachute-industry standard technology.

Figure 1 and Table 1 are furnished as a guide to locating specific tests. Test reports follow Table 1 in numerical order. If an illustration accompanies a report, it bears the same identifying number as the report.

Figure 1. Key to laboratory-test reports, E-0082-TL series, for ringsail parachute 1.5438.

TABLE 1
LABORATORY TEST REPORTS, E-0082-TL SERIES

Test no. E-0082-TL/	Item(s) tested
1	Cloth, Dacron, heat stabilized per Pioneer Spec. E-0082-2
2	Webbing, Dacron, 1-3/4 x 7000 lb per Spec. MIL-W-25361, Type III
3	Joint, webbing to link
4	Joint, suspension line to link
5	Cord, coreless, Dacron, 16 x 16 per Pioneer Spec. E-0067-2 or E-0082-3
6	Joint, suspension line to loop
7	Tape, Dacron, 3/4 x 550 1b
8	Joint, radial to circumferential tape through slot
9	Joint, radial to circumferential tape through gap section
10	Radial tape through gap area
11	Joint, went line to radial tape

ITEM(S) Cloth, Per Pio	Dacron	, heat	D stabiliz -0082-2	ed,	PROJECT NO. TEST	E-0082		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•	NO. E-0	082-TL/	L	
PURPOSE	X UL	TIMATE RENGTH	POINT FAILU		EFFICIENC	Y Потне	R	
load ra	te, ar	d 3-in	. test sa	umple,	l J3, with warp directing	tion on	ly,	
REQUEST JPB	ED BY		EQUESTED	i ,	T APPD. BY PB	DATE A		
			3, 01					•
TABLE Sample	Ult.	t.s	No. of	Sample	Ult. t.s	., No.	of	
no.	1		ends	no.	1b	end		
1	86		115	9	85	11		
2	86		116	10.	84		15	
3 4	86		116	11	84 % 84	11	15	1
4	85 85		115 115	12 13	85 ½		16	
5 6 7	85 87		117	14	84%		16	
1 7	85		115	15	79%		13	
8	84		115	16	834		i5	
1		_	_	CO	MENTS Ch			
From Re	celvin	g Insp	ection Te	of	6 pieces	of warp	thread=	٠.
Samp.	le no.	UIC.	t.s. 1b		7 lb each.			
2	·	•	70		chine = ±			1
1 3			63		del X-5 lo			n.
1 4			68	Le	ngth of sa			J
RESULTS	Fre	om 16 e	engineeri	ng veri	fication (tests.	aws) = 10	ı ın.
Min.	ult.	t.s. =	- 79½ 1b]	Δ = 7	ኔ 1b			
1			- 87 1ь ј	•				1
Av.			84.8 1b	<u>.</u> .			•	
					ion tests	•		
ł			• 63 lb] • 70 lb]	A = 7	1b			ŀ
			67.5 1b		,			
				200174	(these s	anformed	- Com	† •
enginee	r ver	ificat:	ion) are	very si	(these position to sting Lab	test res		
TESTED	BY T.	Bayles	s & F. St	OneDATE	COMPLETE	D 8/7/6	57	1

Webbing, Dacr	on $1-3/4 \times 7000$	1b,	PROJECT NO.	E-0082					
per Spec MIL-W-25361, Ty. III (recap. of test results). TEST E-0082-TL/2 NO.									
PURPOSE IN ULTIMATE OPOINT OF DEFFICIENCY OTHER STRENGTH FAILURE									
TEST METHOD	Use Tinius Olse	en Tens	ion-testin	g machine.					
12,000-1b ran 12-in./min.	TEST METHOD Use Tinius Olsen Tension-testing machine, 12,000-lb range and 3½-in. split drums. Load rate 12-in./min.								
REQUESTED BY	DATE REQUESTED	REQUES	T APPD. BY	DATE APPROVED					
JPB	3/6/67	JP		3/6/67					
TABLE		СОММ	ENTS						
Sample Ult	. t.s., lb	Webb	ing bought	on P.O. 41529					
1	8725		or certific based on	cation for ult					
2	8725		les = 8876						
3	8720	brea	k = 8720 1	b.					
Av	8723			-					
	· · ·								
		1							
<u> </u>									
·				•					
	·								
DECIU TE									
RESULTS	ee table.		•						
				•					
		•							
·	•								
		•							
			·						
conclusions therefore, we	Webbing is in ebbing is accept	excess able f	of rated to or use into	t.s. of mat'l; ended.					
TESTED BY L	aRiviere	DATE	COMPLETED	August 1, 196					

ITEM(S) TO BE TESTED Joint, webbing to link	PROJECT E-0082
ref. Detail "F" Dwg. 1.5438	TEST NO. E-0082-TL/3
PURPOSE X ULTIMATE POINT STRENGTH FAILUR	OF DEFFICIENCY DOTHER
TEST METHOD Use Tinius Olse 12.0 K range and 3½-in. spli	en tension-testing machine, t drums, load rate 12-in./min.
(See attached sketch for deta	ail of test sample.)
REQUESTED BY DATE REQUESTED F JPB 14 July 67	REQUEST APPD. BY DATE APPROVED JPB 14 July 67
TABLE Sample Ult. t.s., 1b	COMMENTS
1 6670*	For webbing, Pioneer Receiving Inspection reports show:
2 6580 * 3 6630 †	Min ult. t.s. = 8720 lb
4 6810 +	Av ult. t.s. = 8723 lb
5 6240†	Max ult. t.s. = 8725 lb
Av 6586	
*Tested 18 July 67 by JPB.	
tTested 14 July 67 by T. Bayles.	
RESULTS	
Av ult. t.s. = 6586 lb Min ult. t.s. = 6240 lb	
Max ult. t.s. = 6240 lb	
	Min ult. t.s. mat'1) = 6240/873 = 71.56%.
Eff. =(Av ult. t.s. joint)/(A	v ult. t.s. mat'l) = 6586/8723 = 75.50%.
CONCLUSIONS Joint is acc	eptable for intended use.
TESTED BY Brecht & Bayles	DATE COMPLETED July 26, 1967

For construction details ref. Detail "F" Dwg. 1.5438

Joint, Webbing to Link
Sketch E-0082-TL/3

ITEM(S) TO BE TESTED Joint, suspension line t	o link	PROJECT NO.	E-0082		
55-ft Ringsail	O IIII.	TEST			
Parachute Ref Dwg. 1.543	8	NO.	E-0082-TL/4		
PURPOSE X ULTIMATE X P STRENGTH F	OINT OF [EFFICIENC	YOTHER		
TEST METHOD Use Tinius 2400-lb scale, w/l2-in./jaws - start condition a	min. load	rate, 10 i	n. between		
REQUESTED BY DATE REQUES JPB 18 July 67		ST APPD. BY	DATE APPROVED 18 July 67		
TABLE Ult. strength, lb	COM	MENTS	of joint is		
Sample Note		d, coreless			
1 622 (1)	E-0	082-3. Fra	om recap. of		
2 640 (2)		t report ba			
3 632 (2)		samples, ult. strength of cord is as follows:			
4 628 (1)		Min = 6	510 lb		
5 646 (2)		Av = (538 lb		
6 630 (2)		Max = (660 lb		
7 650 (1)					
8 644 (1)		Podlod of	reduced cross		
Av. (1) 636 (2) 637 63	36.5	section. Cord faile	•		
RESULTS Joint efficience	y is:		· · · · · · · · · · · · · · · · · · ·		
(Joint t.s. min)/(min (Joint t.s. av)/(av (Joint t.s. min)/(av (Joint t.s. min)/(max	ult. t.s. ult. t.s.	of cord)	= 1.02 = 102%. = 636/638 = 0.9969 = 99.69 = 622/638 = 0.9749 = 97.49		
CONCLUSIONS Joint eff: stress report (95%) appo			iminary design		
TESTED BY Fay & Julie	DAT	E COMPLETE	D		

For construction details ref.
Detail "F" Dwg. 1.5438

Joint, Line to Link Sketch E-0082-TL/4

TTCM(C)	70.05	TECTER			1000	ICCT		
ITEM(S) TO BE TESTED Cord, Coreless, Dacron PROJECT NO. E-0082								
16-16 Blanco Cros								
	E-0067-2 or E-0082-3 NO. E-0082-TL/5							
PURPOSE	IN UL	TIMATE RENGTH	POINT		JEFFI	CIENCY	Отн	ER
			r Method 4102 as					
tension	n-test	ing mac	hine on					
split o	irums.							
REQUEST	ED BY	DATE RE	QUESTED	REQUES	T API	PD. BY	DATE A	PPROVED
JPB			13, 67		PB			13, 67
TABLE			Min ult.	t.s.,	<u>lb</u>			
	Roll	Roll				Roll	Roll	Roll
Sample	601*	602	<u>603</u>	<u>604</u> 6	<u>05</u>	<u>606</u>	<u>607</u>	<u>608</u>
1	620	648	650 6	20 6	52	640	624	630
2	638	610	658 6	640	40	640	660 †	638
3	630	615	658	640	42	636	658+	630+
4	640						660t	625 +
5	620				•		658+	630t
						r		:
			606 boug					
_			6. Roll		_			• • •
tPionee			All ot	hers of	rigin	al Rec	. Insp	. test,
RESULTS			0 sample	s of c	ord.	test r	esults	are
as foll	Dul	ied on j	o bempre	.0 01 0			COULOD	
1		Av. ult	. t.s.	=	638	3 1b		
Min. ult. t.s. = 610 lb								
Max. ult. t.s. = 660 lb								
	A t.s. = max - min = 50 lb							
	NOTE: This report is a recapitulation of all Receiving							
Inspection and Engineering verification reports on this cord to date.								
CONCLU			is accer	ntable	for	use in	tended -	· · · · · · · · · · · · · · · · · · ·
NOTE:			e streng			_		
1			0082-3 1			P-000	-E COI	a 19
TESTED	BY Bay	les, Br	echt,	DATI	E COM	PLETED	24 Ju	1y 67
	_		1 TaRi					

Fay Stone, & LaRiviere

ITEM(S) TO BE TESTED Joint, suspension line to loop. 55-ft Ringsail Parachute, ref. Dwg. 1.5438. PURPOSE X ULTIMATE POINT OF EFFICIENCY OTHER STRENGTH FAILURE						
2400-lb scale, w/12-in./min. jaws - start condition and 3	REQUEST APPD. BY DATE APPROVED					
JPB 26 July 67	JPB 26 July 67					
TABLE Sample Ult. t.s., lb 1 590* 2 600* 3 613* 4 590* 5 625* 6 640† *Cord failed at change of setion. Av. ult. strength = 603.6 lb. †Cord failed at other than change of section.	COMMENTS Weakest member of joint is cord, coreless, Dacron per Pioneer Spec E-0082-3 (16 × 16 cord). Lowest break was 610 lb. Av. of 30 tests was 638 lb. Max. ult. t.s. was 660 lb.					
RESULTS Joint eff. = (min. ult. t.s. of joint)/(min. ult. t.s. of cord) = 590/610 = 97%. or (av. ult. t.s. of joint)/(av. ult. t.s. of cord) =						
603.6/638 = 94.6%.						
ult. t.s. is slightly less t	joint efficiency using av. than the predicted 95% of joint would in all proba-					
TESTED BY Fay Stone & Tony Bayles	DATE COMPLETED August 1, 1967					

Joint-Suspension Line to Loop Attachment
Sketch E-0082-TL/6

Tape, Da	cron, 3	/4 x 55	0-1b r	nin	PROJE NO		E-008	2
ilt. t.s.	- (Rec	ap. of	all te	esting)	TEST NO.	E-06	082 -TL/	7
PURPOSE (ULTIM STREN		POINT FAILU		EFFIC	I ENC	Y Дотн	EŘ
TEST METH ethod 510 400-1b so	00, use	nilar to Tinius 1 3½-in.	Olsen	tensi	on-tes	sting	machin	ne on
REQUESTE	BY DAT	TE REQUE	STED	REQUES	APP	D. BY	DATE A	PPROVED
JPB	4	7/6/67		JPB			7/6/	
TABLE		Mir	ult.	t.s.,	lb			
Sample*	Roll 701	Roll 702	Roll 703	Rol	— 1 Ro	011 05	Roll 706	Roll 707
1	632	592	606	592	50	52	590	640
2	575 +	584+						
3	635+	574t						
4		670+		Rol 708		011 09	Roll 710	Roll 711
5		626+		638		08	608	570
6	•	583 †		630				611
Bman a has	Av	604.8	2100	1620				633
*Tape bot †Engr. re other data reports.	everifi	cation.	All		†		•	589
RESULTS		on 24 s	ample	s of ta	pe te	sted	, resul	ts are
	Av.	ult. t.	8.	= 60	8.3 1	₽ď		
	Min.	ult. t	.8.	= 56	2 1	b		
-	Max.	ult. t	.8.	= 67	0 1	Þ		
	Δt.	s. = ma	x - m:	in = 10	8 1	Þ		
¶Vendor NOTE: T	Certifi ape man	cation ufactur	for a	v. stre	ngth e sep	is 50 arat	82 lb. e yarn	lots.
CONCLUS!	ONS	Tape is	acce	ptable	for u	se i	ntended	
TESTED 3	Y Fay S	tone &		DATE	COMP	LETE	July	26, 196
	T.aR1 u							

LaRiviere

ITEM(S) TO BE TESTED	PROJECT E-0082					
Joint, radial to circumferentiation tape through slot (ref. Detail	TECT					
Dwg. 1.5438) E-0082-TL/8						
PURPOSE WILTIMATE POINT OF	FEFFICIENCY TOTHER					
STRENGTH FAILURE						
TEST METHOD Use Tinius Olsen	tension-testing machine on					
2400-1b scale and with 34-in.						
(See attached sketch for detai	ls of test samples.)					
REQUESTED BY DATE REQUESTED REC	OUEST APPD BY DATE APPROVED					
JPB 24 July 67	JPB 24 July 67					
	COMMENTS Radial Tape from Roll #702 - Test data					
	indicates following values:					
(20)	Min ult. t.s. = 574 lb					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Max ult. t.s. = 670 lb					
4 627	Av* ult. t.s. = 604.8 lb					
1	Circumferential tape - roll#					
top	unknown - for 41 random samples test data indicate					
297	following values					
287 \ av =	Min ult. t.s. = 279 lb					
P _C #1 301 295.5 297	Max ult. t.s. = 330 lb					
2 297	Av ult. t.s. = 306.5 lb					
3 298	*Based on 6 samples tested.					
RESULTS Efficiency in radial						
(Min ult str joint)/(Min ult t	.s. tape) = 619/574 = 107.8%.					
(Av ult str joint)/(Av ult. t.	s. tape) = 624/604 = 103.3%.					
(Min ult str joint)/(Max ult t	.s. tape) = 619/670 = 92.4%.					
Efficiency in circumferential direction is						
(Min ult str joint)/(Min ult t.s. tape) = 287/279 = 102.8%.						
(Av ult str joint)/(Av ult t.s. tape) = $295.5/306.5 = 96.4\%$						
(Min ult str joint)/(Max ult t.s. tape) = 287/330 = 87.0%.						
CONCLUSIONS Joint efficiency for radial tape is within						
predicted values and joining method is acceptable.						
Circumferential tapes are not considered part of primary structure: they are used to prevent flutter damage.						
TESTED BY Fay Stone, Bayles,						
	Die Com Leilo 24 outy of					

For construction and materials details see Dwg. 1.5438 Detail "C".

Joint, Radial to Circumferential Tape Through Slot Sketch E-0082-TL/8

ITEM(S) TO BE TESTED Joint, radial tape to circumf	
tial tape through gap section (See detail B, Dwg. 1.5438.)	TEST E-0082-TL/9
PURPOSE IN ULTIMATE POINT OF STRENGTH FAILURE	F EFFICIENCY OTHER
TEST METHOD Use Tinius Olsen $2400-1b$ scale, for P_R test, a	tension-testing machine on
and with 3½-indiam. split d for details of test sample.)	· · ·
REQUESTED BY DATE REQUESTED RE	EQUEST APPD. BY DATE APPROVED
JPB 10 July 67	JPB 10 July 67
TABLE Test No. Ult. t.s., 1b PR 1 603 2 600 av. =	comments Radial tape from roll 711 - test data indicate the following data: Min. ult. t.s. = 570 lb
3 620 607.6	Max. ult. t.s. = 633 lb av. ult. t.s. = 600 lb
$ \begin{bmatrix} P_C & 1 & 301 \\ 2 & 306 \\ 3 & 296 \end{bmatrix} av. = 301 301 301$	Circumferential tape - roll# unknown - for 41 random samples, test data indicate following values:
	Min. ult. t.s. = 279 lb Max. ult. t.s. = 330 lb Av. ult. t.s. = 306.5 lb
RESULTS Efficiency in ra	dial direction is
(Min. ult. str. joint)/(Min.	ult. t.s. tape) = 600/570
= 105.2%. (Av. ult. str. joint)/(Av. ul = 101.3%.	t. t.s. tape) = 607.6/600
(Min. ult. str. joint)/(Max. = 94.8%.	ult. t.s. tape) = 600/633
Efficiency in ci	rcumferential direction is
(Min. ult. str. joint)/(Min. = 106.1%.	ult. t.s. tape) = 296/279
(Av. ult. str. joint)/(Av. ul = 98.2%.	lt. t.s. tape) = 301/306.5
(Min. ult. str. joint)/(Max. = 89.6%.	ult. t.s. tape) = 296/330
CONCLUSIONS Joint efficiency predicted values and joining Circumferential tapes are structure: they are used to	method is acceptable. not considered part of primary
TESTED BY Fay Stone & Tony Bayles	DATE COMPLETED August 2, 6

For details, see Detail "B" Dwg. 1.5438.

Joint, Radial to Circumferential Tape Through Gap Section Sketch E-0082-TL/9

ITEM(S) TO BE Radial tape t	TESTED	PROJECT E-0082				
		TEST NO. E-0082-11/10				
	TIMATE POINT FAILU					
2400-1b scale	Use Tinius Olse e, with 3½-inc (See attached	en tension-testing machine on diam. drums, and load rate of sketch.)				
20 2111, 11211	(500 0000000					
REQUESTED BY JPB	DATE REQUESTED 13 July 67	REQUEST APPD. BY DATE APPROVED JPB 13 July 67				
TABLE Test No. U	lt. t.s., lb	COMMENTS Tape was from roll 708.				
1	642	(Control samples failed at 620 lb min, 630 lb max. and				
3	642 635	626.6 lb av.)				
Av.	639.6					
·						
RESULTS	Efficiency of	f radial tape is				
(Min. ult. s' = 635/620 =		'(Min. ult. str. of tape)				
(Av. ult. str. of sample)/(Av. ult. str. of tape) = 639.6/626.6 = 102%.						
(Min. ult. str. of sample)/(Max. ult. str. of tape) = 635/630 = 101%.						
CONCLUSIONS Test results indicate that there is no strength loss as a result of stitching.						
TESTED BY Ba	yles & Fay Ston	DATE COMPLETED August 2, 67				

Joint, Radial Tape Through Slots and Gap Sketch E-0082-TL/10

Joint, vent line to radial tape. NO. TEST NO. E-0082-TL/11	ITEM(S) TO BE	E TESTED		PROJECT	E-0082			
PURPOSE VULTIMATE POINT OF EFFICIENCY OTHER TEST METHOD Use Tinius Olsen tension-testing machine, 2400-lb range, 12-in/min load rate and 3½-in. split drums. REQUESTED BY DATE REQUESTED JPB 22 June 67 TABLE Test no. Ult. t.s., 1b 1 606 2 590 3 602 Av. 599 RESULTS Efficiency of joint is (Joint t.s. min)/(min ult t.s. of cord) = 590/610 = 96.7\$. CONCLUSIONS Joint efficiency used in preliminary design stress report (95%) appears to be reasonable.		NO.	E-0002					
TEST METHOD Use Tinius Olsen tension-testing machine, 2400-lb range, 12-in/min load rate and 3½-in. split drums. REQUESTED BY DATE REQUESTED REQUEST APPD. BY DATE APPROVED JPB 22 June 67 TABLE Test no. Ult. t.s., 1b Cord from unknown roll no. Min. ult. t.s. of cord was 610 lb. RESULTS Efficiency of joint is (Joint t.s. min)/(min ult t.s. of cord) = 590/610 = 96.7\$. CONCLUSIONS Joint efficiency used in preliminary design stress report (95%) appears to be reasonable.	דר/ זווו. כאממ בי יייי ו							
REQUESTED BY DATE REQUESTED REQUEST APPD. BY DATE APPROVED JPB 22 June 67 TABLE Test no. Ult. t.s., 1b 1 606 2 590 3 602 Av. 599 RESULTS Efficiency of joint is (Joint t.s. min)/(min ult t.s. of cord) = 590/610 = 96.7%. CONCLUSIONS Joint efficiency used in preliminary design stress report (95%) appears to be reasonable.	PURPOSE LUL ST	TIMATE POINT FAILU	OF X	EFFICIENCY	OTHER			
TABLE Test no. Ult. t.s., 1b 1 606 2 590 3 602 Av. 599 RESULTS Efficiency of joint is (Joint t.s. min)/(min ult t.s. of cord) = 590/610 = 96.7%. CONCLUSIONS Joint efficiency used in preliminary design stress report (95%) appears to be reasonable.	TEST METHOD 2400-1b range	Use Tinius Olse e, 12-in/min loa	n tens d rate	ion-testing and 3½-in	machine, split drums.			
TABLE Test no. Ult. t.s., 1b 1 606 2 590 3 602 Av. 599 RESULTS Efficiency of joint is (Joint t.s. min)/(min ult t.s. of cord) = 590/610 = 96.7\frac{1}{3}. CONCLUSIONS Joint efficiency used in preliminary design stress report (95\frac{1}{3}) appears to be reasonable.	REQUESTED BY	DATE REQUESTED	REQUES	T APPD. BY	DATE APPROVED			
Test no. Ult. t.s., 1b 1 606 2 590 3 602 Av. 599 RESULTS Efficiency of joint is (Joint t.s. min)/(min ult t.s. of cord) = 590/610 = 96.7%. CONCLUSIONS Joint efficiency used in preliminary design stress report (95%) appears to be reasonable.	· ·	i i	•					
Min. ult. t.s. of cord was 610 lb. RESULTS Efficiency of joint is (Joint t.s. min)/(min ult t.s. of cord) = 590/610 = 96.7%. CONCLUSIONS Joint efficiency used in preliminary design stress report (95%) appears to be reasonable.	TABLE		СОММ	ENTS				
RESULTS Efficiency of joint is (Joint t.s. min)/(min ult t.s. of cord) = 590/610 = 96.7%. CONCLUSIONS Joint efficiency used in preliminary design stress report (95%) appears to be reasonable.	Test no. U							
RESULTS Efficiency of joint is (Joint t.s. min)/(min ult t.s. of cord) = 590/610 = 96.7%. CONCLUSIONS Joint efficiency used in preliminary design stress report (95%) appears to be reasonable.	_				.s. or cord			
RESULTS Efficiency of joint is (Joint t.s. min)/(min ult t.s. of cord) = 590/610 = 96.7%. CONCLUSIONS Joint efficiency used in preliminary design stress report (95%) appears to be reasonable.	_				. •			
RESULTS Efficiency of joint is (Joint t.s. min)/(min ult t.s. of cord) = 590/610 = 96.7%. CONCLUSIONS Joint efficiency used in preliminary design stress report (95%) appears to be reasonable.			1					
CONCLUSIONS Joint efficiency used in preliminary design stress report (95%) appears to be reasonable.	AV.	599						
CONCLUSIONS Joint efficiency used in preliminary design stress report (95%) appears to be reasonable.					•			
CONCLUSIONS Joint efficiency used in preliminary design stress report (95%) appears to be reasonable.								
CONCLUSIONS Joint efficiency used in preliminary design stress report (95%) appears to be reasonable.								
CONCLUSIONS Joint efficiency used in preliminary design stress report (95%) appears to be reasonable.					•			
CONCLUSIONS Joint efficiency used in preliminary design stress report (95%) appears to be reasonable.		•			•			
CONCLUSIONS Joint efficiency used in preliminary design stress report (95%) appears to be reasonable.	DECIN TO		_1	<u> </u>				
CONCLUSIONS Joint efficiency used in preliminary design stress report (95%) appears to be reasonable.	RESOLIS	Efficiency	of Joi	nt is				
stress report (95%) appears to be reasonable.	(Joint t.s. r	min)/(min ult t.	s. of	cord) = 59	0/610 = 96.7%.			
stress report (95%) appears to be reasonable.		•						
stress report (95%) appears to be reasonable.		•						
stress report (95%) appears to be reasonable.		•						
stress report (95%) appears to be reasonable.								
stress report (95%) appears to be reasonable.								
TESTED BY J.P. Brecht DATE COMPLETED 4 August 67	1	ACTITO CITTOTOL	to be	d in preli reasonable	minary design			
	TESTED BY J	.P. Brecht	DATE	COMPLETED	4 August 67			

For details, see Dwg. 1.5438, Detail "A".

Joint, Vent Line to Radial Tape
Sketch E-0082-TL/11